
Latest on Linear Sketches for Large Graphs:
Lots of Problems, Little Space,

and Loads of Handwaving

Andrew McGregor
University of Massachusetts

Latest on Linear Sketches for Large Graphs:
Lots of Problems, Little Space,

and Loads of Handwaving

Andrew McGregor
University of Massachusetts

Vertex Connectivity and Sparsification Guha, McGregor, Tench [PODS 2015]
Densest Subgraphs McGregor, Tench, Vorotnikova, Vu [MFCS 2015]

Matching, Vertex Cover, Hitting Set
 Chitnis, Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova [TBA 2016]

• Motivation: Dynamic Graph Streams. Want to analyze a
massive graph defined by a long sequence of edge insertions
and deletions. Don’t want to have to store the entire graph.

Background

• Motivation: Dynamic Graph Streams. Want to analyze a
massive graph defined by a long sequence of edge insertions
and deletions. Don’t want to have to store the entire graph.

• Main Technique: Linear Sketches. Maintain a random linear
projections of vectors and matrices representing the graph.

Background

• Motivation: Dynamic Graph Streams. Want to analyze a
massive graph defined by a long sequence of edge insertions
and deletions. Don’t want to have to store the entire graph.

• Main Technique: Linear Sketches. Maintain a random linear
projections of vectors and matrices representing the graph.

• What’s Known: Lots and lots! Edge and vertex connectivity,
spectral sparsification, matching, vertex cover, hitting set,
correlation clustering, triangles, spanners, densest subgraph…

Background

• Motivation: Dynamic Graph Streams. Want to analyze a
massive graph defined by a long sequence of edge insertions
and deletions. Don’t want to have to store the entire graph.

• Main Technique: Linear Sketches. Maintain a random linear
projections of vectors and matrices representing the graph.

• What’s Known: Lots and lots! Edge and vertex connectivity,
spectral sparsification, matching, vertex cover, hitting set,
correlation clustering, triangles, spanners, densest subgraph…

Background

G

r

a

p

h

S

t

r

e

a

m

A

l

g

o

r

i

t

h

m

s

:

A

S

u

r

v

e

yAndrew McGregor⇤
University of Massachusetts

mcgregor@cs.umass.eduABSTRACTOver the last decade, there has been considerable in-

terest in designing algorithms for processing massive

graphs in the data stream model. The original moti-

vation was two-fold: a) in many applications, the dy-

namic graphs that arise are too large to be stored in the

main memory of a single machine and b) considering

graph problems yields new insights into the complexity

of stream computation. However, the techniques devel-

oped in this area are now finding applications in other

areas including data structures for dynamic graphs, ap-

proximation algorithms, and distributed and parallel com-

putation. We survey the state-of-the-art results; iden-

tify general techniques; and highlight some simple al-

gorithms that illustrate basic ideas.1. INTRODUCTIONMassive graphs arise in any application where there

is data about both basic entities and the relationships

between these entities, e.g., web-pages and hyperlinks;

neurons and synapses; papers and citations; IP addresses

and network flows; people and their friendships. Graphs

have also become the de facto standard for representing

many types of highly-structured data. However, analyz-

ing these graphs via classical algorithms can be chal-

lenging given the sheer size of the graphs. For exam-

ple, both the web graph and models of the human brain

would use around
1

0

1

0 nodes and IPv6 supports
2

1

2

8

possible addresses.One approach to handling such graphs is to process

them in the data stream model where the input is de-

fined by a stream of data. For example, the stream could

consist of the edges of the graph. Algorithms in this

model must process the input stream in the order it ar-

rives while using only a limited amount memory. These

constraints capture various challenges that arise when

processing massive data sets, e.g., monitoring network

traffic in real time or ensuring I/O efficiency when pro-

cessing data that does not fit in main memory. Related

⇤Supported in part by NSF awards CCF-0953754 and CCF-

1320719 and a Google Research Award.

questions that arise include how to trade-off size and ac-

curacy when constructing data summaries and how to

quickly update these summaries. Techniques that have

been developed to the reduce the space use have also

been useful in reducing communication in distributed

systems. The model also has deep connections with a

variety of areas in theoretical computer science includ-

ing communication complexity, metric embeddings, com-

pressed sensing, and approximation algorithms.

The data stream model has become increasingly pop-

ular over the last twenty years although the focus of

much of the early work was on processing numerical

data such as estimating quantiles, heavy hitters, or the

number of distinct elements in the stream. The earli-

est work to explicitly consider graph problems was the

influential by paper by Henzinger et al. [36] which con-

sidered problems related to following paths in directed

graphs and connectivity. Most of the work on graph

streams has occurred in the last decade and focuses on

the semi-streaming model [27, 52]. In this model the

data stream algorithm is permittedO
(n

p

o

ly

lo

g n
) space

where n is the number of nodes in the graph. This is

because most problems are provably intractable if the

available space is sub-linear in n, whereas many prob-

lems become feasible once there is memory roughly pro-

portional to the number of nodes in the graph.

In this document we will survey the results known

for processing graph streams. In doing so there are nu-

merous goals including identifying the state-of-the-art

results for a variety of popular problems and identify-

ing general algorithmic techniques. It will also be nat-

ural to discuss some important summary data structures

for graphs, such as spanners and sparsifiers. Through-

out, we will present various simple algorithms, some of

which may not be optimal, that illustrate basic ideas and

would be suitable for teaching in an undergraduate or

graduate classroom setting.Notation. Throughout this document we will use n and

m to denote the number of nodes and edges in the graph

under consideration. For any natural number k, we use

[k
] to denote the set {

1,
2, . . . , k}. We write a

= b ± c

Graph Streaming Survey
McGregor [SIGMOD Record 2014]

Preliminary

• L0 Sampling Primitive There’s a distribution over matrices
M∈ℜpolylog(N) x N such that for any x∈ℜN, a random non-zero
element of x can be reconstructed from Mx whp.

• Jowhari, Saglam, Tardos [PODS 2011]

Preliminary

• L0 Sampling Primitive There’s a distribution over matrices
M∈ℜpolylog(N) x N such that for any x∈ℜN, a random non-zero
element of x can be reconstructed from Mx whp.

• Jowhari, Saglam, Tardos [PODS 2011]

• Corollary Can sample a uniform edge from a graph in the
dynamic graph stream model using O(polylog n) bits of space.

• Density of node set S is DS =|ES|/|S|. Estimate D*=maxS DS.

Densest Subgraph

• Density of node set S is DS =|ES|/|S|. Estimate D*=maxS DS.

• Previous Result 2+ε approximations using Õ(ε-2 n) space.

• Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]

Densest Subgraph

• Density of node set S is DS =|ES|/|S|. Estimate D*=maxS DS.

• Previous Result 2+ε approximations using Õ(ε-2 n) space.

• Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]

• Our Result Single pass (1+ε)-approx. using Õ(ε-2 n) space:

Densest Subgraph

• Density of node set S is DS =|ES|/|S|. Estimate D*=maxS DS.

• Previous Result 2+ε approximations using Õ(ε-2 n) space.

• Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]

• Our Result Single pass (1+ε)-approx. using Õ(ε-2 n) space:

• Sample of t=O(n log n) edges using L0 sampling. Let ĎS be
density among sampled edge scaled by m/t. Return maxS ĎS

Densest Subgraph

• Density of node set S is DS =|ES|/|S|. Estimate D*=maxS DS.

• Previous Result 2+ε approximations using Õ(ε-2 n) space.

• Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]

• Our Result Single pass (1+ε)-approx. using Õ(ε-2 n) space:

• Sample of t=O(n log n) edges using L0 sampling. Let ĎS be
density among sampled edge scaled by m/t. Return maxS ĎS

• Analysis With probability 1-n-2k for any subset S of size k,

Densest Subgraph

• Density of node set S is DS =|ES|/|S|. Estimate D*=maxS DS.

• Previous Result 2+ε approximations using Õ(ε-2 n) space.

• Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]

• Our Result Single pass (1+ε)-approx. using Õ(ε-2 n) space:

• Sample of t=O(n log n) edges using L0 sampling. Let ĎS be
density among sampled edge scaled by m/t. Return maxS ĎS

• Analysis With probability 1-n-2k for any subset S of size k,

• ĎS ≈ε DS if DS ≈ D* and ĎS ≪ D* if DS ≪ D*

Densest Subgraph

• Density of node set S is DS =|ES|/|S|. Estimate D*=maxS DS.

• Previous Result 2+ε approximations using Õ(ε-2 n) space.

• Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]

• Our Result Single pass (1+ε)-approx. using Õ(ε-2 n) space:

• Sample of t=O(n log n) edges using L0 sampling. Let ĎS be
density among sampled edge scaled by m/t. Return maxS ĎS

• Analysis With probability 1-n-2k for any subset S of size k,

• ĎS ≈ε DS if DS ≈ D* and ĎS ≪ D* if DS ≪ D*

• Use union bound over O(nk) subsets of size k for each k.

Densest Subgraph

• Density of node set S is DS =|ES|/|S|. Estimate D*=maxS DS.

• Previous Result 2+ε approximations using Õ(ε-2 n) space.

• Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]

• Our Result Single pass (1+ε)-approx. using Õ(ε-2 n) space:

• Sample of t=O(n log n) edges using L0 sampling. Let ĎS be
density among sampled edge scaled by m/t. Return maxS ĎS

• Analysis With probability 1-n-2k for any subset S of size k,

• ĎS ≈ε DS if DS ≈ D* and ĎS ≪ D* if DS ≪ D*

• Use union bound over O(nk) subsets of size k for each k.

• see also Mitzenmacher et al. [KDD 2015], Esfandiari et al. [ArXiv 2015]

Densest Subgraph

What other types of sampling are there that a) are
useful for solving graph problems and b) can be

supported on dynamic graph streams?

1. Graph Matching
via SNAPE Sampling

II. Graph Connectivity
via DEALS Sampling

• 1st Result If max matching has size ≤k, can find optimal
matching in dynamic stream model using Õ(k2) space.

• Optimal & Simple. Extends to hypergraph matching, vertex
cover, hitting set… but gets a lot more complicated.

• Basic Idea: “SNAPE” sampling primitive.

Graph Matchings

• 1st Result If max matching has size ≤k, can find optimal
matching in dynamic stream model using Õ(k2) space.

• Optimal & Simple. Extends to hypergraph matching, vertex
cover, hitting set… but gets a lot more complicated.

• Basic Idea: “SNAPE” sampling primitive.

• 2nd Result If max matching has size ≥k, can find matching of
size Ω(k/t) in the dynamic stream model using Õ(k2/t3) space.

• Application: Guessing k gives O(t)-approx for max matching
using Õ(n2/t3) space. This is also optimal; see Sanjeev’s talk.

Graph Matchings

SNAPE Sampling
Sample-Nodes-And-Pick-Edge

• SAMPLE each node with prob. ϴ(1/k) and DELETE the rest

SNAPE Sampling
Sample-Nodes-And-Pick-Edge

• SAMPLE each node with prob. ϴ(1/k) and DELETE the rest

SNAPE Sampling
Sample-Nodes-And-Pick-Edge

• SAMPLE each node with prob. ϴ(1/k) and DELETE the rest

SNAPE Sampling
Sample-Nodes-And-Pick-Edge

• SAMPLE each node with prob. ϴ(1/k) and DELETE the rest

• RETURN a random edge amongst those that remain. If no
edges remain, return NULL.

SNAPE Sampling
Sample-Nodes-And-Pick-Edge

• SAMPLE each node with prob. ϴ(1/k) and DELETE the rest

• RETURN a random edge amongst those that remain. If no
edges remain, return NULL.

SNAPE Sampling
Sample-Nodes-And-Pick-Edge

• SAMPLE each node with prob. ϴ(1/k) and DELETE the rest

• RETURN a random edge amongst those that remain. If no
edges remain, return NULL.

• Theorem If G has max matching size ≤k then O(k2 log k)
SNAPE samples will include a max matching from G.

SNAPE Sampling
Sample-Nodes-And-Pick-Edge

• Let G have max matching of size ≤k. Say node is heavy if degree
is ≥10k and edge is shallow if both endpoints aren’t heavy.

Small Matching Analysis: Basic Idea

SHALLOW EDGE
HEAVY NODE

• Let G have max matching of size ≤k. Say node is heavy if degree
is ≥10k and edge is shallow if both endpoints aren’t heavy.

Small Matching Analysis: Basic Idea

SHALLOW EDGE
HEAVY NODE

• Let G have max matching of size ≤k. Say node is heavy if degree
is ≥10k and edge is shallow if both endpoints aren’t heavy.

• Lemma Let G’ contains a max matching of G if:
G’ includes all shallow edges in G.
Every heavy node in G has degree at least 5k in G’.

Small Matching Analysis: Basic Idea

SHALLOW EDGE
HEAVY NODE

• Let G have max matching of size ≤k. Say node is heavy if degree
is ≥10k and edge is shallow if both endpoints aren’t heavy.

• Lemma Let G’ contains a max matching of G if:
G’ includes all shallow edges in G.
Every heavy node in G has degree at least 5k in G’.

Small Matching Analysis: Basic Idea

SHALLOW EDGE
HEAVY NODE

• Let G have max matching of size ≤k. Say node is heavy if degree
is ≥10k and edge is shallow if both endpoints aren’t heavy.

• Lemma Let G’ contains a max matching of G if:
G’ includes all shallow edges in G.
Every heavy node in G has degree at least 5k in G’.

• Proof Each missing edge is incident to some heavy node but you
still have plenty of other edges on that node.

Small Matching Analysis: Basic Idea

SHALLOW EDGE
HEAVY NODE

• Let G have max matching of size ≤k. Say node is heavy if degree
is ≥10k and edge is shallow if both endpoints aren’t heavy.

• Lemma Let G’ contains a max matching of G if:
G’ includes all shallow edges in G.
Every heavy node in G has degree at least 5k in G’.

• Proof Each missing edge is incident to some heavy node but you
still have plenty of other edges on that node.

• Useful Fact G has a vertex cover W of size at most 2k.

Small Matching Analysis: Basic Idea

SHALLOW EDGE
HEAVY NODE

Small Matching Analysis: Shallow Edges

u v

SHALLOW
EDGE

• If we delete nodes (other than u and v) in hitting set W and
neighbors of u, v leaves exactly the edge uv if u and v sampled.

Small Matching Analysis: Shallow Edges

u v

SHALLOW
EDGE

• If we delete nodes (other than u and v) in hitting set W and
neighbors of u, v leaves exactly the edge uv if u and v sampled.

Small Matching Analysis: Shallow Edges

u v

SHALLOW
EDGE

• If we delete nodes (other than u and v) in hitting set W and
neighbors of u, v leaves exactly the edge uv if u and v sampled.

Small Matching Analysis: Shallow Edges

u v

SHALLOW
EDGE

• If we delete nodes (other than u and v) in hitting set W and
neighbors of u, v leaves exactly the edge uv if u and v sampled.

Small Matching Analysis: Shallow Edges

u v

SHALLOW
EDGE

• If we delete nodes (other than u and v) in hitting set W and
neighbors of u, v leaves exactly the edge uv if u and v sampled.

• Hence, if uv is shallow:

Small Matching Analysis: Shallow Edges

Pr[uv is only remaining edge] � p2(1� p)|�(u)|+|�(v)|+|W |
= ⌦(k�2

)

u v

SHALLOW
EDGE

• If we delete nodes (other than u and v) in hitting set W and
neighbors of u, v leaves exactly the edge uv if u and v sampled.

• Hence, if uv is shallow:

• After O(k2 log k) repetitions, have sampled edge uv whp.

Small Matching Analysis: Shallow Edges

Pr[uv is only remaining edge] � p2(1� p)|�(u)|+|�(v)|+|W |
= ⌦(k�2

)

u v

SHALLOW
EDGE

Small Matching Analysis: Edges on Heavy Nodes

HEAVY NODE

• For heavy u, deleting W\{u} leaves star on u with ≥ 8k leaves.

Small Matching Analysis: Edges on Heavy Nodes

HEAVY NODE

• For heavy u, deleting W\{u} leaves star on u with ≥ 8k leaves.

Small Matching Analysis: Edges on Heavy Nodes

HEAVY NODE

• For heavy u, deleting W\{u} leaves star on u with ≥ 8k leaves.

• Hence,

Small Matching Analysis: Edges on Heavy Nodes

Pr[edge incident to u is sampled] � p(1� p)|W |
= ⌦(k�1

)

HEAVY NODE

• For heavy u, deleting W\{u} leaves star on u with ≥ 8k leaves.

• Hence,

• After O(k2 log k) repetitions, have sampled 5k edges on u.

Small Matching Analysis: Edges on Heavy Nodes

Pr[edge incident to u is sampled] � p(1� p)|W |
= ⌦(k�1

)

HEAVY NODE

• Theorem If G has matching ≥k then O(k/t3) SNAPE samples
with p=ϴ(t/k) has matching of size Ω(k/t) with high probability.

Approximate Matching: Basic Idea

• Theorem If G has matching ≥k then O(k/t3) SNAPE samples
with p=ϴ(t/k) has matching of size Ω(k/t) with high probability.

• Proof

• Let e1, e2, e3, e4,… be sequence of SNAPE samples and
consider constructing greedy matching M.

Approximate Matching: Basic Idea

• Theorem If G has matching ≥k then O(k/t3) SNAPE samples
with p=ϴ(t/k) has matching of size Ω(k/t) with high probability.

• Proof

• Let e1, e2, e3, e4,… be sequence of SNAPE samples and
consider constructing greedy matching M.

• Assuming |M|=o(k/t) then

Approximate Matching: Basic Idea

Pr[e
i

added to M] ⇡ Pr[e
i

isn’t a NULL] · Pr[all endpoints in M are deleted]

= ⌦(kp2) · (1� p)o(k/t) = ⌦(t2/k)

• Theorem If G has matching ≥k then O(k/t3) SNAPE samples
with p=ϴ(t/k) has matching of size Ω(k/t) with high probability.

• Proof

• Let e1, e2, e3, e4,… be sequence of SNAPE samples and
consider constructing greedy matching M.

• Assuming |M|=o(k/t) then

• After O(k/t2) SNAPE samples we have |M|= Ω(k/t)

Approximate Matching: Basic Idea

Pr[e
i

added to M] ⇡ Pr[e
i

isn’t a NULL] · Pr[all endpoints in M are deleted]

= ⌦(kp2) · (1� p)o(k/t) = ⌦(t2/k)

1. Graph Matching
via SNAPE Sampling

II. Graph Connectivity
via DEALS Sampling

Graph Connectivity

• 1st Result Test if graph is k-edge-connected in Õ(kn) space.

• Basic Idea: “DEALS” sampling primitive.

Graph Connectivity

• 1st Result Test if graph is k-edge-connected in Õ(kn) space.

• Basic Idea: “DEALS” sampling primitive.

• 2nd Result Distinguish node connectivity ≤k from ≥(1+ε)k
using Õ(ε-1kn) space.

• Basic Idea: Combine node sampling and DEALS sampling.

• Open: Testing exactly exact node connectivity?

Graph Connectivity

• 1st Result Test if graph is k-edge-connected in Õ(kn) space.

• Basic Idea: “DEALS” sampling primitive.

• 2nd Result Distinguish node connectivity ≤k from ≥(1+ε)k
using Õ(ε-1kn) space.

• Basic Idea: Combine node sampling and DEALS sampling.

• Open: Testing exactly exact node connectivity?

• 3rd Result (1+ε)-approx every cut using Õ(ε-2n) space.

• Basic Idea: Combine edge sampling and DEALS sampling.

• Hypergraph Sparsifiers: Extends Kogan, Krauthgamer [ITCS 2015]

Graph Connectivity

DEALS Sampling
Direct-Edges-Add-L0-Sketches

DEALS Sampling
Direct-Edges-Add-L0-Sketches

• Problem Sample edge across cut (S,V\S) where cut is specified
at end of the stream. May use Õ(n) space.

DEALS Sampling
Direct-Edges-Add-L0-Sketches

• Problem Sample edge across cut (S,V\S) where cut is specified
at end of the stream. May use Õ(n) space.

• Algorithm Construct Ma1, Ma2, … , Man where M is L0-sampling
sketch and ai encodes neighborhood of node i.

DEALS Sampling
Direct-Edges-Add-L0-Sketches

• Problem Sample edge across cut (S,V\S) where cut is specified
at end of the stream. May use Õ(n) space.

• Algorithm Construct Ma1, Ma2, … , Man where M is L0-sampling
sketch and ai encodes neighborhood of node i.

1

2

3

5

4

DEALS Sampling
Direct-Edges-Add-L0-Sketches

• Problem Sample edge across cut (S,V\S) where cut is specified
at end of the stream. May use Õ(n) space.

• Algorithm Construct Ma1, Ma2, … , Man where M is L0-sampling
sketch and ai encodes neighborhood of node i.

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�
a1 = (1 1 0 0 0 0 0 0 0 0)

DEALS Sampling
Direct-Edges-Add-L0-Sketches

• Problem Sample edge across cut (S,V\S) where cut is specified
at end of the stream. May use Õ(n) space.

• Algorithm Construct Ma1, Ma2, … , Man where M is L0-sampling
sketch and ai encodes neighborhood of node i.

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�
a1 = (1 1 0 0 0 0 0 0 0 0)

a2 = (� 1 0 0 0 1 0 0 0 0 0)

DEALS Sampling
Direct-Edges-Add-L0-Sketches

• Problem Sample edge across cut (S,V\S) where cut is specified
at end of the stream. May use Õ(n) space.

• Algorithm Construct Ma1, Ma2, … , Man where M is L0-sampling
sketch and ai encodes neighborhood of node i.

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�
a1 = (1 1 0 0 0 0 0 0 0 0)

a2 = (� 1 0 0 0 1 0 0 0 0 0)

DEALS Sampling
Direct-Edges-Add-L0-Sketches

• Problem Sample edge across cut (S,V\S) where cut is specified
at end of the stream. May use Õ(n) space.

• Algorithm Construct Ma1, Ma2, … , Man where M is L0-sampling
sketch and ai encodes neighborhood of node i.

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�
a1 = (1 1 0 0 0 0 0 0 0 0)

a2 = (� 1 0 0 0 1 0 0 0 0 0)
a1 + a2 = (0 1 0 0 1 0 0 0 0 0)

DEALS Sampling
Direct-Edges-Add-L0-Sketches

• Problem Sample edge across cut (S,V\S) where cut is specified
at end of the stream. May use Õ(n) space.

• Algorithm Construct Ma1, Ma2, … , Man where M is L0-sampling
sketch and ai encodes neighborhood of node i.

• Lemma Non-zero entries of ∑i∈S ai = edges across (S,V\S) and
hence, ∑i∈S Mai = M(∑i∈S ai) yields random edge across (S,V\S).

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�
a1 = (1 1 0 0 0 0 0 0 0 0)

a2 = (� 1 0 0 0 1 0 0 0 0 0)
a1 + a2 = (0 1 0 0 1 0 0 0 0 0)

DEALS Sampling
Direct-Edges-Add-L0-Sketches

• Problem Sample edge across cut (S,V\S) where cut is specified
at end of the stream. May use Õ(n) space.

• Algorithm Construct Ma1, Ma2, … , Man where M is L0-sampling
sketch and ai encodes neighborhood of node i.

• Lemma Non-zero entries of ∑i∈S ai = edges across (S,V\S) and
hence, ∑i∈S Mai = M(∑i∈S ai) yields random edge across (S,V\S).

• Application Find spanning trees and edges in light cuts.

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�
a1 = (1 1 0 0 0 0 0 0 0 0)

a2 = (� 1 0 0 0 1 0 0 0 0 0)
a1 + a2 = (0 1 0 0 1 0 0 0 0 0)

Application to Node Connectivity…

• Simplified Result Can answer queries of form “are u and v
connected after removal of set of k nodes S” using Õ(kn) space.

Application to Node Connectivity…

• Simplified Result Can answer queries of form “are u and v
connected after removal of set of k nodes S” using Õ(kn) space.

• Algorithm

• Sample some edges and answer “no” iff there’s no S-avoiding
path between u and v amongst sampled edges.

Application to Node Connectivity…

• Simplified Result Can answer queries of form “are u and v
connected after removal of set of k nodes S” using Õ(kn) space.

• Algorithm

• Sample some edges and answer “no” iff there’s no S-avoiding
path between u and v amongst sampled edges.

• How to sample: Pick each node with probability1/k and find
spanning forest on these nodes. Repeat Õ(k2) times.

Application to Node Connectivity…

• Simplified Result Can answer queries of form “are u and v
connected after removal of set of k nodes S” using Õ(kn) space.

• Algorithm

• Sample some edges and answer “no” iff there’s no S-avoiding
path between u and v amongst sampled edges.

• How to sample: Pick each node with probability1/k and find
spanning forest on these nodes. Repeat Õ(k2) times.

• Analysis Let u-x1-x2-….-xt-v be S-avoiding path in input graph.

Application to Node Connectivity…

• Simplified Result Can answer queries of form “are u and v
connected after removal of set of k nodes S” using Õ(kn) space.

• Algorithm

• Sample some edges and answer “no” iff there’s no S-avoiding
path between u and v amongst sampled edges.

• How to sample: Pick each node with probability1/k and find
spanning forest on these nodes. Repeat Õ(k2) times.

• Analysis Let u-x1-x2-….-xt-v be S-avoiding path in input graph.

• Spanning forest on sampled nodes contains an S-avoiding path
between xi and xi+1 with prob. p2(1-p)k≈k-2. After Õ(k2) repeats
we have S-avoiding path in E’ with high probability.

Application to Node Connectivity…

• Result Can (1+ε) approximate all cuts using O(ε-2n) space.

Application to Cut Sparsification…

• Result Can (1+ε) approximate all cuts using O(ε-2n) space.

• Basic Idea

• Sampling edges with probability ≥ (cε-2 log n)/λe preserves all
cut sizes where λe is the edge connectivity. Fung et al. [STOC 2011]

Application to Cut Sparsification…

• Result Can (1+ε) approximate all cuts using O(ε-2n) space.

• Basic Idea

• Sampling edges with probability ≥ (cε-2 log n)/λe preserves all
cut sizes where λe is the edge connectivity. Fung et al. [STOC 2011]

• Use DEALS sampling to pick all edges with λe≤2cε-2 log n and
sample each remaining edge with probably 1/2.

Application to Cut Sparsification…

• Result Can (1+ε) approximate all cuts using O(ε-2n) space.

• Basic Idea

• Sampling edges with probability ≥ (cε-2 log n)/λe preserves all
cut sizes where λe is the edge connectivity. Fung et al. [STOC 2011]

• Use DEALS sampling to pick all edges with λe≤2cε-2 log n and
sample each remaining edge with probably 1/2.

• Recurse O(log n) times in parallel until we have sparse graph.

Application to Cut Sparsification…

Thanks!

Graph Streaming Survey McGregor [SIGMOD Record 2014]

Vertex Connectivity and Sparsification. Guha, McGregor, Tench [PODS 2015]
Densest Subgraphs. McGregor, Tench, Vorotnikova, Vu [MFCS 2015]

Matching, Vertex Cover, Hitting Set.
 Chitnis, Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova [TBA 2016]

Thanks!

Graph Streaming Survey McGregor [SIGMOD Record 2014]

Vertex Connectivity and Sparsification. Guha, McGregor, Tench [PODS 2015]
Densest Subgraphs. McGregor, Tench, Vorotnikova, Vu [MFCS 2015]

Matching, Vertex Cover, Hitting Set.
 Chitnis, Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova [TBA 2016]

