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and deletions. Don’t want to have to store the entire graph.

‘0"' Main Technique: Linear Sketches. Maintain a random linear
o prolectlons of vectors and matrices representing the graph.

/i .+ @ “What's Known: Lots and lots! Edge and vertex connectivity,
spectral sparsification, matching, vertex cover, hitting set,
correlation clustering, triangles, spanners, densest subgraph...
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Graph Streaming Survey
McGregor [SIGMOD Record 2014]
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® | Sampling Primitive There’s a distribution over matrices
_ MeRpollos™) xN sych that for any xRN, a random non-zero
element of x can be reconstructed from Mx whp.

S§

Jowhari, Saglam, Tardos [PODS 201 [ ]

o 0 | Corollary Can sample a uniform edge from a graph in the
| dynamic graph stream model using O(polylog n) bits of space.




Densest Subgraph

® Density of node set S is Ds =|Es|/|S|. Estimate D*=maxs Ds.




Densest Subgraph

® Density of node set S is Ds =|Es|/|S|. Estimate D*=maxs Ds.

® Previous Result 2+€ approximations using O(&2 n) space.
Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]




Densest Subgraph

® Density of node set S is Ds =|Es|/|S|. Estimate D*=maxs Ds.

® Previous Result 2+€ approximations using O(&2 n) space.
Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]

® Our Result Single pass (1+€)-approx. using O(£2 n) space:




Densest Subgraph

® Density of node set S is Ds =|Es|/|S|. Estimate D*=maxs Ds.

® Previous Result 2+€ approximations using O(&2 n) space.
Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]

® Our Result Single pass (1+€)-approx. using O(£2 n) space:

Sample of t=O(n log n) edges using Lo sampling. Let Ds be
density among sampled edge scaled by m/t. Return maxs Ds




Densest Subgraph

Density of node set S is Ds =|Es|/|S|. Estimate D*=maxs Ds.

Previous Result 2+¢& approximations using O(€-2 n) space.
Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]

Our Result Single pass (|+€)-approx. using O(£2 n) space:

Sample of t=O(n log n) edges using Lo sampling. Let Ds be
density among sampled edge scaled by m/t. Return maxs Ds

Analysis With probability 1-n-2< for any subset S of size k,




Densest Subgraph

Density of node set S is Ds =|Es|/|S|. Estimate D*=maxs Ds.

Previous Result 2+¢& approximations using O(€-2 n) space.
Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]

Our Result Single pass (|+€)-approx. using O(£2 n) space:

Sample of t=O(n log n) edges using Lo sampling. Let Ds be
density among sampled edge scaled by m/t. Return maxs Ds

Analysis With probability 1-n-2< for any subset S of size k,

Ds~:Dsif Ds~ D* and Ds<« D*if Ds« D




Densest Subgraph

Density of node set S is Ds =|Es|/|S|. Estimate D*=maxs Ds.

Previous Result 2+¢& approximations using O(€-2 n) space.
Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]

Our Result Single pass (|+€)-approx. using O(£2 n) space:

Sample of t=O(n log n) edges using Lo sampling. Let Ds be
density among sampled edge scaled by m/t. Return maxs Ds

Analysis With probability 1-n-2< for any subset S of size k,

Ds~:Dsif Ds~ D* and Ds<« D*if Ds« D

Use union bound over O(n¥) subsets of size k for each k.




Densest Subgraph

Density of node set S is Ds =|Es|/|S|. Estimate D*=maxs Ds.

Previous Result 2+¢& approximations using O(€-2 n) space.
Bhattycharya et al. [STOC 2015], Bahmani et al. [PVLDB 2012]

Our Result Single pass (|+€)-approx. using O(£2 n) space:

Sample of t=O(n log n) edges using Lo sampling. Let Ds be
density among sampled edge scaled by m/t. Return maxs Ds

Analysis With probability 1-n-2< for any subset S of size k,

Ds~:Dsif Ds~ D* and Ds<« D*if Ds« D

Use union bound over O(n¥) subsets of size k for each k.

see also Mitzenmacher et al. [KDD 2015], Esfandiari et al. [ArXiv 2015]




What other types of sampling are there that a) are
useful for solving graph problems and b) can be

supported on dynamic graph streams?




I. Graph Matching [Il. Graph Connectivity
via SNAPE Sampling via DEALS Sampling
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® st Result If max matching has size <k, can find optimal
matching in dynamic stream model using O(k?) space.

® Optimal & Simple. Extends to hypergraph matching, vertex
cover, hitting set... but gets a lot more complicated.

® Basic Idea: “SNAPE” sampling primitive.

® 7nd Result If max matching has size >k, can find matching of
size QQ(k/t) in the dynamic stream model using O(k?/t3) space.

® Application: Guessing k gives O(t)-approx for max matching
using O(n?/t3) space.This is also optimal; see Sanjeev’s talk.
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SNAPE Sampling

Sample-Nodes-And-Pick-Edge

® SAMPLE each node with prob. ©(1/k) and DELETE the rest

® RETURN a random edge amongst those that remain. If no
edges remain, return NULL.

® Theorem If G has max matching size <k then O(k? log k)
SNAPE samples will include a max matching from G.
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Small Matching Analysis: Basic Idea

® |et G have max matching of size <k. Say node is heavy if degree
is = |10k and edge is shallow if both endpoints aren’t heavy.

SHALLOW EDGE HEAVY NODE

® |[emma Let G’ contains a max matching of G if:
o G’ includes all shallow edges in G.
O Every heavy node in G has degree at least 5k in G’.

® Proof Each missing edge is incident to some heavy node but you
still have plenty of other edges on that node.

Useful Fact G has a vertex cover W of size at most 2k.
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SHALLOW
EDGEl

e

® |f we delete nodes (other than u and v) in hitting set W and
neighbors of u, v leaves exactly the edge uv if u and v sampled.

® Hence,if uv is shallow:
Pr[uv is only remaining edge] > p?(1 — p)MWIFITWIHWE — Q(k—2)

o After O(k? log k) repetitions, have sampled edge uv whp.
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HEAVY NODE

!

® For heavy u, deleting W\{u} leaves star on u with > 8k leaves.

® Hence,
Prledge incident to u is sampled] > p(1 — p)IW! = Q(k™)

o After O(k? log k) repetitions, have sampled 5k edges on u.
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® Theorem If G has matching =k then O(k/t’) SNAPE samples
with p=0O(t/k) has matching of size ()(k/t) with high probability.

® Proo

® |ete,eyes es... be sequence of SNAPE samples and
consider constructing greedy matching M.

® Assuming |[M|=o(k/t) then
Prle; added to M| = Pr[e; isn't a NULL] - Pr[all endpoints in M are deleted]
= Q(kp?) - (1 — p)?W/") = Q(*/k)

o After O(k/t?) SNAPE samples we have |M|= Q(k/t)
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Graph Connectivity

® st Result Test if graph is k-edge-connected in O(kn) space.

® Basic Idea:"DEALS” sampling primitive.

® 2Znd Result Distinguish node connectivity <k from =(l+g)k
using O(&-'kn) space.

® Basic Idea: Combine node sampling and DEALS sampling.
® Open:Testing exactly exact node connectivity!?

® 3rd Result (1+€)-approx every cut using O(€2n) space.

® Basic Idea: Combine edge sampling and DEALS sampling.

® Hypergraph Sparsifiers: Extends Kogan, Krauthgamer [ITCS 2015]
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DEALS Sampling

¥ Direct-Edges-Add-Lo-Sketches

Problem Sample edge across cut (S,V\S) where cut is specified
at end of the stream. May use O(n) space.

Algorithm Construct Maj, May, ... , Man where M is Lo-sampling
sketch and aj encodes neighborhood of node .

{1,2 {1,3} {14} {1,5} {2,3} {24} {2,5} {34} {3,5} {45}

® |[emma Non-zero entries of > icsai = edges across (S,V\S) and
hence, D ics Mai = M(2es ai) yields random edge across (S,V\S).

® Application Find spanning trees and edges in light cuts.
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Application to Node Connectivity...

® Simplified Result Can answer queries of form “are u and v
connected after removal of set of k nodes S” using O(kn) space.

® Algorithm

® Sample some edges and answer “no” iff there’s no S-avoiding
path between u and v amongst sampled edges.

® How to sample: Pick each node with probability | /k and find
spanning forest on these nodes. Repeat O(k?) times.

® Analysis Let u-x|-x2-....-x-v be S-avoiding path in input graph.

® Spanning forest on sampled nodes contains an S-avoiding path
between x; and x;+| with prob. p(1-p)k=k2. After O(k?) repeats
we have S-avoiding path in E’ with high probability.
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® Result Can (l+¢) approximate all cuts using O(g2n) space.

® Basic Idea

e Sampling edges with probability > (ce log n)/A. preserves all
cut sizes where Acis the edge connectivity. Fung et al. [STOC 201 1]

® Use DEALS sampling to pick all edges with Ae<2ce”?log n and
sample each remaining edge with probably 1/2.
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® Result Can (l+¢) approximate all cuts using O(g2n) space.

® Basic Idea

Sampling edges with probability = (ce? log n)/Ae preserves all
cut sizes where Acis the edge connectivity. Fung et al. [STOC 201 1]

Use DEALS sampling to pick all edges with Ae<2ce&?log n and
sample each remaining edge with probably 1/2.

Recurse O(log n) times in parallel until we have sparse graph.
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